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summary: Using a test based on kinetic resolution the O- 
phenylseleno-alkyllithium compounds 3 have been shown to 
undergo enantiomer equilibration at -105OC with a rate 
corn arable 

g 
to that of their addition to aldehydes. At - 

125 C in Me-THF as solvent, the a-phenylseleno-alkyllithi- 
um compounds 10 were found to be configurational stable for 
at least 6 hours. 

a-heterosubstituted alkyl-lithium compounds 1 could serve as valu- 

able reagents in stereoselective synthesis, provided they are configuratio- 
nally stable. This holds for the MOM derivatives la,' which Still la 

showed to be configurationally stable up to -3OOC in THF. 

r la: X=OMOM c: X= Br 
r 

b: SPh d: SePh 

The related phenylthio derivatives lb equilibrate fairly rapidly at -78'C 

in THF,2 but individual stereoisomers of lb may be trapped selectively by 
fast intramolecular processes.3 As far as the corresponding bromo deriva- 
tives lc go, recent results 4 suggest them to be configurationally stable 
at -llO°C in a Trapp solvent mixture.5 Moreover, the phenylseleno deriva- 
tives ld appeared to equilibrate rapidly at -78OC in ether.6 This is in 
line with similar observations by Krief 7 and Reich 8 on a-phenylseleno- 
cyclohexyllithium derivatives in TX-IF at -78OC. We would like to show here 
that compounds of the type ld equilibrate at a measureable rate at -105OC 
in THF/ether mixtures and are configurationally stable at -120°C in methyl- 
tetrahydrofuran for at least several hours. 

We have recently developed a test,' by which the rate of configurational 
equilibration of an organolithium compound 1 can be compared to the rate of 
trapping of 1 by an electrophile. The test is based on kinetic resolution 
and can be applied to the racemic organolithium compounds 1. In order to 
get information on the a-phenylseleno-pentyl-lithium reagent 3, it was 
generated from the selenoacetal 2 and treated at -105OC with racemic N,N- 
dibenzyl-phenylalaninal 4.1' Due to the high asymmetric induction from 
the stereogenic centre in the aldehyde only two diastereomeric products 5 
and 6 (instead of four isomers) were obtained in 97% yield. While the 
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sol SePh e n-SuLi 

SePh - 

THFl f&O e 

Ii 

2 

nc-4 93% 63 32 

(8-4 97% 53 46 

lnversaAddiito (S)- 4 33% 50 50 

configuration of the products has not been ascertained, precedent lo 
suggests that the adducts 5 and 6 have the same relative configuration 
at C-6 and C-7. The diastereomer ratio was determined by analytical HPLC 
to be 68:32 (stereoisomers unassigned). 

This level of kinetic resolution in the reaction of e.g. (S)-3 with (S)-4 
and (B)-4 is sufficient and optimal for carrying out the test experiments. 

To this end, the organolithium compound 3 was trapped by enantiomerically 
pure (S)-4, giving again the products 5 and 6, but in a different ratio 
(54:46). The mere fact, that the two experiments gave different product 
ratios, is evidence that the equilibration of 3 ~+ent-3 is slower than the 
addition of 3 to the aldehyde 4. The product ratio of the second experiment 
approaches the value of 50:50, which would result on comnlete reaction of 

both enantiomers of 3, provided they are configurationally stable. A value 
between 50:50 and that defined by kinetic resolution (68:32) could also 
result, if the rates of trapping of 3 by the aldehyde 4 and of the enantio- 
mer equilibration of 3 are of the same magnitude. In this case, a higher 

rate of trapping, e.g. a higher aldehyde concentration, should bring the 
product ratio closer to 50:50. We therefore added the lithium compound 3 to 

a 10.4-fold excess of the aldehyde 4. The ratio of the products varied over 
several runs between 50:50 and 53:47. 

This test indicated qualitatively that the individual enantiomers of 3 have 
sufficient life times at -105OC to be trapped by electrophiles without 
racemisation. More quantitative information was sought using the classical 
technique 'r 2 starting from individual isomers of ld which contain a 
further stereogenic center as an internal reference point: The seleno 
acetal 7 was converted into the diastereomeric tin-seleno compounds 8 
(unassigned ratio 36:64) which were separated by MPLC. 

Tin-lithium exchange on 8 with n-butyllithium required ca. 2 h at -lOO°C in 

THF. Subsequent trapping of the resulting organolithium compounds 10 with 
acetone proceeded only in low yield (45%) due to concomitant enolisation. 
Much higher yields (90-95%) were attained by trapping of 10 with methyl 
iodide. Starting from a 1:2 mixture of 8 the two diastereomers of 11 were 
obtained in a 3:l ratio (by 13C-NMR, structures unassigned). Starting from 
the individual isomers of 8 mixtures of 11 of the same diastereomeric 
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7 
J 

I 

8 8’ 

n-BuLi, THF, - 78’ 

9 10 10' 

All compounds are racemic, 
the relative configurations 
are not assigned 

composition (75:25) were obtained. Thus, the a-phenylselenoalkyl-lithium 
compounds 10 had fully equilibrated over a 2 h period in THF at -lOO°C. 

Experiments at still lower temperatures required a different solvent 
(methyl-THF) and a tin-precursor, from which the organolithium compounds 10 

can be generated more rapidly. Thus, a mixture of the trimethyltin deriva- 

tives 9 was obtained as above in 93% yield (37:63 diastereomer ratio). 
Addition of this mixture at -120°C to methyllithium in methyl-THF followed 
after 6 h by CH31 (45 min) gave the seleno compounds 11 in 79% yield in a 
38:62 ratio. The diastereomeric tin derivatives 9 could be separated by 
MPLC. The minor one took 6 h to react with methyllithium at -120°. Quen- 
ching with CH31 gave a 16:84 diastereomer ratio of 11. The major diastereo- 
mer of 9 reacted over 2 h with methyllithium at -12OOC. Trapping with CH31 
gave a 92:8 diastereomer ratio of 11. Therefore equilibration between the 
diastereomeric lithium compounds 10 had occurred to only a small extent. 
This happened probably during the addition of the insufficiently precooled 
(-7a"c) solution of 9, as reaction of the major diastereomer of 9 with 
methyllithium at -120°C and quenching after 3 or 6 h resulted in identical 
92:8 product ratios of 11. This value does not represent the thermodynamic 
ratio of the lithio compounds 10 in methyl-THF, because starting from 
either isomer of 8 equilibrated mixtures of 10 could be generated by 
treatment with n-butyllithium in methyl-THF at -78OC. Slow cooling to 
-120°C followed by quenching with CH31 gave the diastereomers of 11 in a 
65:35 ratio, representing the thermodynamic ratio of the organolithium 
epimers 10. Hence, the individual isomers of 10 must be stable for more 
than 3 h at -120°C in methyl-THF. 
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Representative WMR-data: 'H WMR (300 MHz, CDC13): 13C WMR (75 MHz, CDC13). 
5/6 major diasteromer: 0.92 (t, J = 7.1 Hz, 3H), 1.10 - 1.35 (m, 5H), 1.52 
- 1.72 (m, lH), 2.19 (broad d, lH), 2.96 (dd, J = 14.2 and 5.1 Hz, lH), 
3.09 (dd, J = 14.2 and 6.8 Hz, lH), 3.20 (dt, J = 5.3 and 7.0 Hz, lH), 3.53 

(s, 4H), 3.66 (m, lH), 4.01 (m, lH), 7.08 - 7.49 (m, 20H). - 14.1, 22.7, 
27.8, 31.0, 33.0, 53.4, 54.0, 60.5, 74.6, 125.7 - 129.6, 134.8, 139.5, 
141.7. - Minor diasteromer: 0.75 (t, J = 7.1 Hz, 3H), 0.96 - 1.28 (m, 5H), 
1.35 - 1.49 (m, lH), 2.81 -. 2.99 (m, 3H), 3.05 (dd, J = 13.9 and 7.3 Hz, 

lH), 3.19 (dt, J = 2.5 and 6.7 Hz, lH), 3.66 and 3.78 (AB-system, J = 14.2 

Hz, 4H), 3.81 (m, lH), 7.25 - 7.48 (m, 20H). - 13.8, 22.1, 29.9, 31.5, 
31.6, 54.6, 56.2, 60.5, 73.0, 125.7 - 129.6, 135.1, 140.1, 140.9. - 11 
major diastereomer: 17.0, 18.2, 24.0, 29.7, 37.3, 38.5, 57.7, 84.0, 127.3, 
128.8, 129.1, 135.1. - Minor diastereomer: 17.3, 17.9, 21.7, 29.7, 35.8. 
38.0, 57.1, 83.5, 127.2, 128.8, 129.5, 134.6. 
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